Figure: Emil Ivanov, Steme und Weltraum,

**Cnrs** 

# The EXOZODI Project

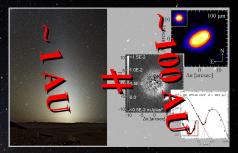
#### A statistical survey for exozodiacal dust with near-infrared interferometry –

### Steve Ertel - IPAG UJF Grenoble

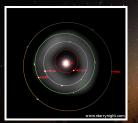
#### ON BEHALF OF:

Jean-Charls Augereau Philippe Thebault Olivier Absil Jean-Baptiste Le Bouquin Denis Defrère and the EXOZODI team




 $\mathfrak{O} \mathfrak{Q} \mathfrak{O}$ 

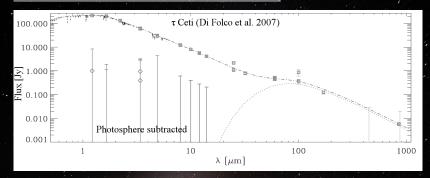
Steve Ertel – IPAG UJF Grenoble


## Prolog

#### What is exozodiacal dust?

- Dust around main sequence stars (~ 1 AU)
- **NOT** a typical debris disk (maybe related)
- Similar to our zodiacal disk




#### Why do we care?



- Dust in the habitable zone
- Structures might point towards planets
  - BUT: Obstacle for imaging of earthlike planets

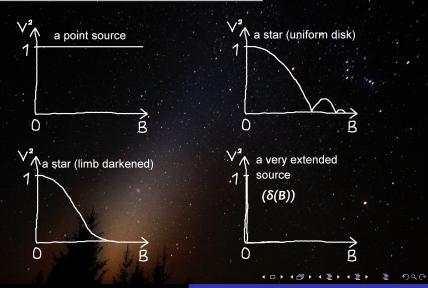
Steve Ertel - IPAG UJF Grenoble

How to detect exozodiacal dust?

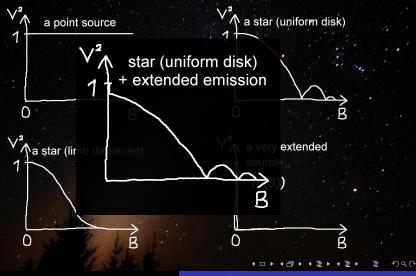


- Our zodiacal dust would be too faint to be detected, e.g., by Spitzer (more than 100 times)
- Actually, the photometric calibration uncertainty is the problem (few percent of the total flux of the system)

### How to detect exozodiacal dust?

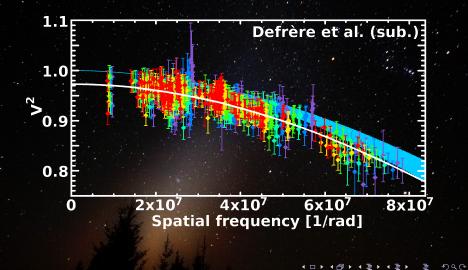



→ Dust emission alone would be detectable (10 mJy to 1 Jy)
⇒ disentangle stellar emission and dust emission


Solution: infrared interferometry

 $\mathfrak{O} \mathfrak{Q} \mathfrak{O}$ 

#### Solution: infrared interferometry!




#### Solution: infrared interferometry!



Steve Ertel – IPAG UJF Grenoble

#### Solution: Interferometry!



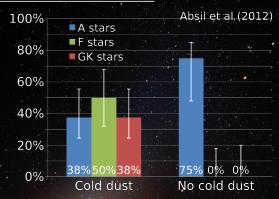
Several possible origins of exozodiacal dust, but all have problems (details: see talk by A. Bonsor):

- Local collisions of large bodies
  - + High amount vs. short lifetime of the dust
  - ⇒ Statistics of frequency/dust mass vs. age
- Recent planetary collision
  - + Low probability vs. high detection rate?
  - ⇒ Statistics of frequency among stars in general
- Evaporation of comets from outer disk
  - + Large number of comets required (LHB?)
  - ⇒ Statistics of correlation between exozodis and exo-Kuiper belts

4 E + 4 E +

SQ P

### The project:


- First statistical survey for exozodiacal dust
- Northern (CHARA/FLUOR) and southern hemisphere (VLTI/PIONIER)
- ~ 100 stars (K < 5) with debris disks, same number of stars without (known) cold dust, unbiased sample
  - Observation, statistics + detailed modeling & theoretical investigation (see talk by A. Bonsor)
  - Development of next-generation debris disk modeling tools (see poster by Q. Kral (26))
  - Direct contribution to instrument development (e.g., PIONIER: First 4-telescope beam combiner on the VLTI)

4 = > 4 = >

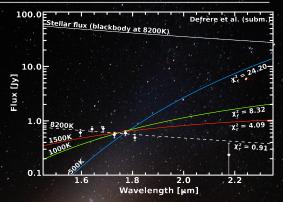
SQ P

### **First results**

### Statistics (CHARA/FLUOR):

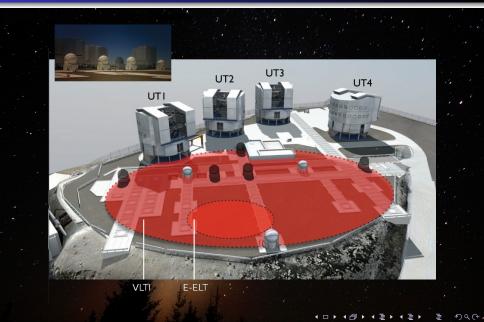


- $\sim$  So far 12 detections out of 41 stars (29<sup>+8</sup><sub>-6</sub>%)
- Cold & hot dust correlated for late type stars, for early type stars not
- Note low statistical significance so far!


Steve Ertel – IPAG UJF Grenoble

steve.ertel@obs.ujf-grenoble.fr

ma (~


### **First results**

#### A detailed study on $\beta$ Pic (VLTI/PIONIER):



- Clear detection (~8.5 $\sigma$ , 4 independent epochs)
- Companion ruled out to be responsible (closure phases)
- Emission very hot (sublimation relevant Lebreton et al., in prep.) or dominated by scattering of stellar light

ma (~



Steve Ertel – IPAG UJF Grenoble

### **VLTI/PIONIER**

| Instrument Avai | lable # Tel. | $\lambda$ range | V <sup>2</sup> accuracy |
|-----------------|--------------|-----------------|-------------------------|
| MIDI 20         | 03 2         | N               | 5%                      |
| AMBER 20        | 06 3         | Н, К            | 20%                     |
| PIONIER 20      | 10 4         | Н, К            | 1%                      |
| MATISSE 20      | 14? 4        | L, M, N         | (?)                     |
| GRAVITY 20      | 14? 4        | K               | (1% ?)                  |

- Have a 4 telescope beam combiner available in short time (2 years!!!)
- Low budget: 200,000 Euro + man power + used detector
- Trade-offs for quick availability, low price
- Experience with integrated optics beam combiner

n a (~

### Summary

- Understanding origin of exozodis is crucial for understanding evolution of planetary systems
- Knowing frequency, abundance is crucial for future direct imaging of earthlike planets
- We carry out the first statistical, interferometric survey
- First statistics: Exozodis present around many main sequence stars, maybe related to debris disks (around solar-type stars)
- Not every detection of hot excess necessarily an exozodi, scattering can result in false detections in systems with edge-on seen debris disks

### Thank you very much\*!

\* Must-see: Talk by A. Bonsor, posters by Q. Kral (26), V. Faramaz (14)

Steve Ertel – IPAG UJF Grenoble

steve.ertel@obs.ujf-grenoble.fr

ma (~