Thermal Reemission from Debris Disks at High Angular Resolution

- From Herschel to ALMA and SPICA -

Steve Ertel (IPAG UJF Grenoble)

Representing the Herschel/DUNES team (PI: C. Eiroa)

and the debris disk groups at

IPAG UJF Grenoble (Head: J.-C. Augereau)

and ITAP CAU Kiel (Head: S. Wolf)

Overview

Herschel/DUNES

- Strategy
- + Statistics, Highlights
- SPICA/SAFARI: Possible science cases
 - + The DUNES strategy with SPICA/SAFARI
 - Detailed composition for bright disks
 - + Even spatially resolved for nearby/extended disks
- Planet-disk interaction in debris disks
 - + Structures
 - + Observations

Prologue – What are debris disks?

- Optically thin dust disks around old stars (main sequence), nearly no gas
- Dust not primordial (time scales), produced through collisions of larger objects
- Usually extents up to several 100 AU (radius),
 inner holes of several 10 AU

Prologue - Why do we care?

- Colliding objects: planetesimals (planet formation)
- Dynamics of dust influenced through interaction with planets
- Dust: large surface ⇒ observable
- Analogy to Solar System

Prologue - Debris disk key projects on Herschel

- GTKP "Stellar Disk Evolution" (PI: G. Olofsson) Few known, resolved debris disks & younger disks, 61 h
- DUNES OTKP (PI: C. Eiroa) Sensitivity limited survey, 140 h
- → **DEBRIS** OTKP (PI: B. Matthews) Flux limited survey, 140 h
- Gas in young systems, few young debris disks, 400 h

Herschel/DUNES: Strategy

- Volume & sensitivity limited sample of solar-type stars (F, G, K)
- \Rightarrow $d \le 20 \,\mathrm{pc}$
- Some additional sources $20 \text{ pc} \le d \le 25 \text{ pc}$ (Spitzer excess or planet host stars)
- Observations at 100 μm & 160 μm
- ightharpoonup Detect stellar photosphere with 3 σ at 100 μ m
- ightharpoonup Follow-up observations with SPIRE & at $70\mu m$ if reasonable

Herschel/DUNES: Statistics

Sp. Type	F	G	K	Total
Sample	28	53	52	133
Non-excess	17	37	38	92
Excess (New)	9 (2)	14 (6)	11 (5)	34 (13)
	32%	26%	21%	26%
"Peculiar"	2	2	4	8
Resolved	4 (3)	8 (4)	4 (2)	12 (9)
Excess + Plane	t 2 (2)	7 (1)	2 (1)	11 (4)

Eiroa et al. (in prep.)

Herschel/DUNES: Spatially resolved disks

HD 207129: Marshall et al. (2011), Löhne et al. (2012) q^1 Eri: Liseau et al. (2010), Augereau et al. (in prep.)

Herschel/DUNES: Peculiar disks

- **Top:** Cold disks T_{bb} ≤ 22 K, but R_{disk} ≤ 92 / 56 / 130 AU (Eiroa et al., 2011; Marshall et al., submitted)
- **Bottom:** Steep SEDs − Significant under abundance of large grains, $R_{disk} \sim 30 \, \text{AU}$, $a \sim 10 \, \mu \text{m}$ (Ertel et al., submitted)

The DUNES strategy with SPICA/SAFARI

Higher sensitivity and broad spectroscopic capabilities

- Factor 100 in sensitivity ⇒ factor 10 in distance
 - Problem: Photometric calibration, confusion (ALMA might help!)
 - Same strategy, larger sample
 (d≤100pc: 133⇒ ~ 16000 stars, ~ 4300 disks)
- Low resolution spectroscopy: Really determine SED shape in the far IR (steep SEDs, cold disks)
 - Total flux less relevant, as long as shape of the spectrum is well defined
 - + Same strategy, $d \le 20 \,\mathrm{pc}$, but spectroscopy

Detailed composition of the dust

GASPS, Lebreton et al. (2012)

Even spatially resolved for nearby/extended disks

Even spatially resolved for nearby/extended disks

Ertel et al. (2011)

Planet-disk interaction in debris disks

Ertel et al. (in prep.)

Conclusions

In the context of debris disks, due to high sensitivity, broad spectroscopic capabilities, and sufficient spatial resolution ...

... SPICA/SAFARI is great for:

- Large, unbiased surveys
- Detailed studies of grain composition/shape through well determined far-IR SEDs
- Spatially resolved studies of grain composition/shape for nearby/extended disks
- At shorter wavelength, mostly NOT SAFARI: Spatially resolved studies of structures due to planet-disk interaction