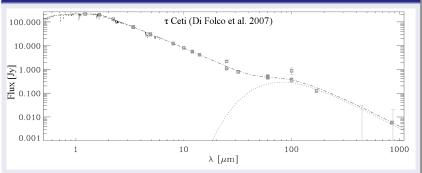
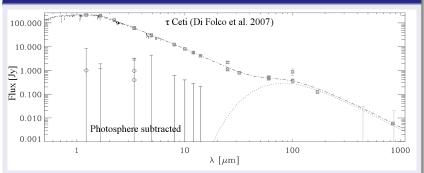

Debris Disks with PIONIER

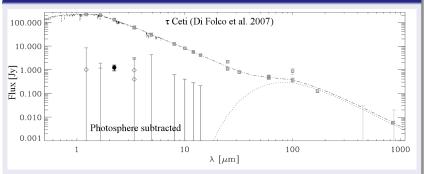
Steve Ertel


Debris Disks with PIONIER Exozodis with PIONIER

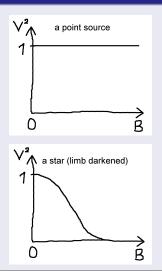
Steve Ertel

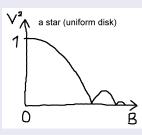


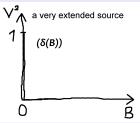
How to detect exozodis?

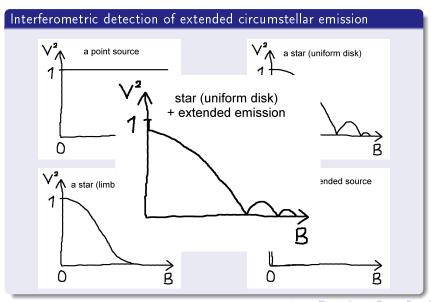

- A new unit: 1 zodi = fractional luminosity $(L_{\rm dust}/L_{\star})$ of our zodical dust
- Spitzer sensitivity (3 σ): 100 zodis (70 μm), 1000 zodis (24 μm), 1400 zodis (8 μm)

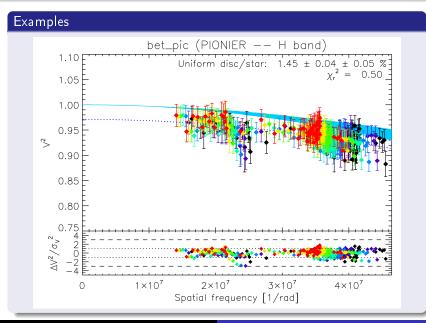
How to detect exozodis?


- A new unit: 1 zodi = fractional luminosity $(L_{\rm dust}/L_{\star})$ of our zodical dust
- Spitzer sensitivity (3 σ): 100 zodis (70 μm), 1000 zodis (24 μm), 1400 zodis (8 μm)


How to detect exozodis?




- F_{disk} in the order of 10 mJy to Jy in near-infrared, easily detectable if star was not there
- Disentangle disk & star, measure flux of disk alone with photometric uncertainty of few percent, but how?


Interferometric detection of extended circumstellar emission

Possible origins of the dust

Several possible explanations, but all have problems

- Local collisions of large bodies
 - High amount of dust vs. short lifetime of dust and large age of systems
 - ⇒ Statistics of frequency/dust mass vs. age
- Recent planetary collision
 - Low probability vs. high detection rate?
 - ⇒ Statistics of frequency among stars in general
- Evaporation of comets from outer disk
 - Large number of comets required (Late Heavy Bombardment?)
 - ⇒ Statistics of correlation between exozodis and exo-Kuiper belts
- ⇒ Statistics!!!

The EXOZODI project

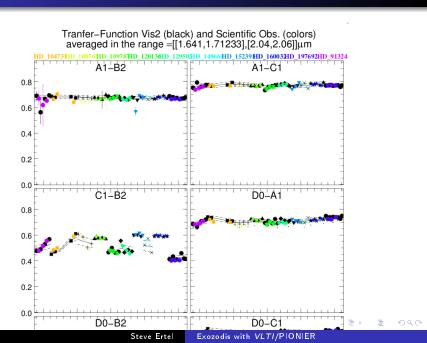
Overview

- First statistical survey for exozodis
- Northern (CHARA/FLUOR, K band) and southern (VLTI/PIONIER, H band) hemisphere
- $ho \sim 100$ stars (H, K < 5) with debris disks and same number without (known) debris disks
- Northern sample basically observed (Absil et al., in prep.)
- Observations of southern sample just started (April 2012)
- Additional follow-up observations of detections (color, time variability) and some more detailed studies of single objects
- Interpretation of results through detailed analytical, dynamical and collisional modeling

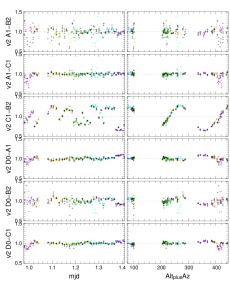
The EXOZODI project

First results from the northern sample

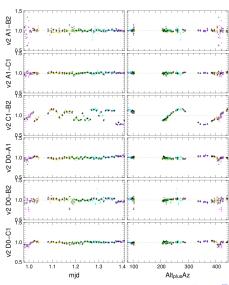
- Similar detection rate for hot dust as for cold dust, decreasing towards later spectral types
- Cold dust not required for presence of hot dust
- Strange: For FGK stars the PRESENCE, for A stars the ABSENCE of cold dust seems to support the presence of hot dust.
- Note: Still preliminary results, small number statistics, some biases in northern sample.

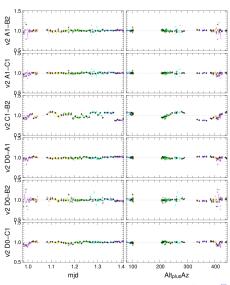

The EXOZODI project: PIONIER observations

Observing strategy


- Use shortest baselines, stellar diameters from brightness relations (V to JHK)
- Star is then (mostly) unresolved, errors from brightness relations small
- Exozodi still resolved out (mostly larger than FOV)
- ⇒ Point source + fully extended source
 - \bullet Typically three shots with calibrators in between, 18 visibilities, cumulative 3 σ accuracy \sim 0.5%

Status of observations


- ullet Total of 12 nights necessary (\sim 100 stars), 6 granted, 6 proposed for last OT call (decision pending)
- First two nights observed, third lost due to weather, 19 targets, results pending



Thank you very much!

The EXOZODI project: PIONIER observations

Sample

- Consider all main sequence stars observed by *Spitzer* at $70\mu \mathrm{um}$ and by *Herschel*
- Separate in debris disk and non-excess stars
- Skip all close binaries (< 5")
- Estimate stellar diameter from brightness relations (V to JHK)
- Skip stars with large diameters (no MS stars?)
- Always observe a debris disk star followed by a most similar non-excess star (most comparable samples)