MODELLIERUNG DER RÄUMLICHEN STRUKTUR VON DEBRIS-SCHEIBEN

Steve Ertel

Institut für Theoretische Physik und Astrophysik, CAU Kiel

MODELING THE SPATIAL STRUCTURE OF DEBRIS DISKS* Simultaneous multi-wavelength modeling and predictions on the observability of planet-disk interaction

^{*}Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel

Überblick

Prolog

- Was sind Debris-Scheiben? Wieso Debris-Scheiben?
- Physik von Debris-Scheiben
- Beobachtung
- Ein analytisches Modell

• [A] Modellierung anhand hochwertiger Daten

- HD 107146 Der Vorteil von Streulichtdaten
- q¹ Eri & HD 207129 Aufgelöste Daten im fernen Infrarot
- Steile spektrale Energieverteilung Ein Spezialfall

• [B] Simulation von Strukturen und deren Beobachtbarkeit

- Planet-Scheibe-Wechselwirkung Modellierung & Ergebnisse
- Simulation von Beobachtungen
- Anwendung auf neue Beobachtungen
- Zusammenfassung & Ausblick

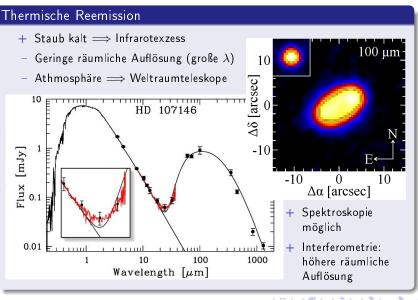
Prolog - Was sind Debris-Scheiben?

- Optisch dünne Staubscheiben um ältere Sterne (Hauptreihensterne), nahezu gasfrei
- Staub nicht primordial (Zeitskalen), Entstehung durch Kollisionen größerer Objekte
- Üblicherweise Ausdehnungen bis einige 100 AE Radius, innere Löcher von einigen 10 AE

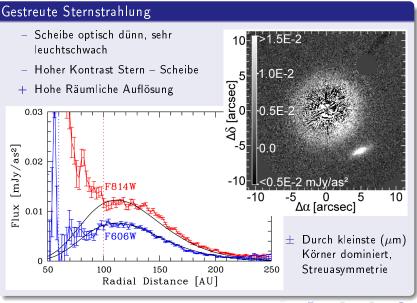
Prolog - Wieso Debris-Scheiben?

- Kollidierende Objekte: Planetesimale (Planetenentstehung)
- Dynamik von Staub beeinflusst durch Wechselwirkung mit Planeten
- Staub: große Oberfläche ⇒ beobachtbar
- Analogie zum Sonnensystem

Prolog - Physik von Debris-Scheiben


Strahlungsprozesse

- Absorbtion/Reemission von Sternstrahlung
- Streuung von Sternstrahlung (winkelabhängig)
- Annahmen: optisch dünn, thermisches Gleichgewicht mit Sternstrahlung


Dynamische Prozesse

- ullet Gravitation des Sterns \Longleftrightarrow Strahlungsdruck: **Blow-out size**
- Poynting-Robertson-Effekt: Entfernen kleiner Körner
- Kollisionen: Zerkleinern von Staub, ideal: $dn(a) \propto a^{-3.5} da$ (Dohnany 1969)

Prolog - Beobachtung

Prolog - Beobachtung

Prolog – Ein analytisches Modell

Radiale Staubverteilung

Rotationssymmetrie

$$\sigma(r) \propto r^{-\alpha}$$
 (Oberflächendichte)

Innerer, äußerer Radius $R_{
m in}$, $R_{
m out}$

Korngrößenverteilung

 $dn(a) \propto a^{-\gamma} da$

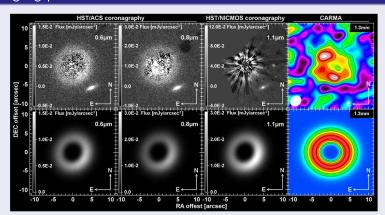
Untere, obere Korngröße a_{\min} , a_{\max}

Manchmal: $a_{\min} = a_{\text{blow}}$

Staubzusammensetzung

Oft astronomisches Silikat (Draine 1987, Draine 2003)

Optische Eigenschaften: Mie Streuung (sphärische, kompakte Körner)


Modellierung anhand hochwertiger Daten

[A] Modellierung anhand hochwertiger Daten (1):

HD 107146 – Der Vorteil von Streulichtdaten

HD 107146

Ausgangspunkt

Bekannt:

d = 28.5 pc $i = 25^{\circ}$ Spektralklasse: G2 V Alter ~ 100 Myr

 $L_{\star} = 1.1 \, \mathrm{L}_{\odot}$ $T_{\mathrm{eff}} = 5850 \, \mathrm{K}$

HD 107146

Modellierung

Daten im Streulicht, ~ Draufsicht


Räumliche Verteilung one profiles (HST/ACS) F814W F814W F806W Radial Distance [AU]

Alternative zu Potenzgesetz:

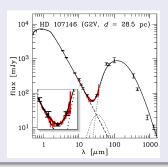
$$\sigma(r) \propto \left(\frac{r-s}{r_{\mathsf{p}}-s}\right)^{lpha} \cdot \exp\left[lpha\left(1-rac{r-s}{r_{\mathsf{p}}-s}
ight)
ight]$$

Korngrößenverteilung

Standardansatz: $n(a) \propto a^{-\gamma}$, a_{\min} , $a_{\max} = 1$ mm, Astronomisches Silikat

- Parameterraum: 3 + 2 statt 5 Dimensionen
- Fit generell gut, aber Probleme mit Spitzerspektrum

HD 107146

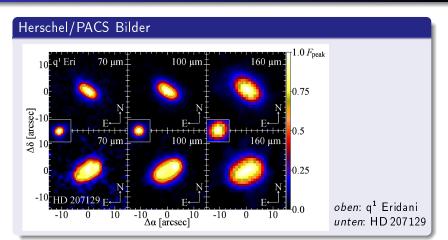

Ergebnisse

Allgemein:

- ullet Breite Scheibe (\sim 50 AE ... \sim 230 AE)
- ullet Max. Oberflächendichte bei $\sim 130~{
 m AE}$
- Große untere Korngröße ($> 2 \mu m$)
- $\bullet~$ Staubmasse $\sim 6 \times 10^{-7}~M_{\odot}$

Spitzerspektrum:

- Modifikation: $a_{\min} > 3 \, \mu \mathrm{m}$
- Zusätzliche Staubkomponente, wenige AE vom Stern

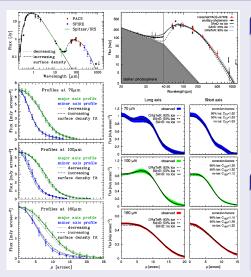


Modellierung anhand hochwertiger Daten

[A] Modellierung anhand hochwertiger Daten (2):

q¹ Eri & HD 207129 – Aufgelöste Daten im fernen Infrarot

Aufgelöste Scheiben von Herschel


Systeme

<u>q¹ Eri:</u> F8 V, $L_{\star} = 1.57 \, \mathrm{L}_{\odot}$, $d = 17.4 \, \mathrm{pc}$, Alter: $\sim 0.3 \, ... \, 6.3 \, \mathrm{Gyr}$

 ${
m HD\,207129:}$ G2 V, $L_{\star}=1.26\,{
m L}_{\odot}$, $d=16.0\,{
m pc}$, Alter: $\sim1.5\,\dots\,3.2\,{
m Gyr}$

Aufgelöste Scheiben von Herschel

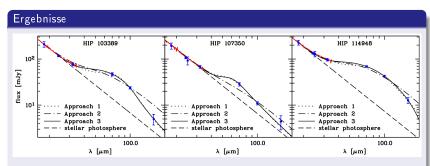
Simultane Modellierung aller Daten (Potenzgesetze)

Ergebnisse: q¹ Eri

- 2 Lösungen:
 - (1) $r \sim 60 \text{ AE } ... \text{ "}\infty\text{"}$ $\alpha \text{ positiv}$
 - (2) $r \sim 5$ AE...180 AE α negativ

andere Parameter "gutartig"

Ergebnisse: HD 207129


- $r \sim 60 \text{ AE} \dots 200 \text{ AE}$
- α negativ
- ullet a_{\min} einige μ m

Modellierung anhand hochwertiger Daten

[A] Modellierung anhand hochwertiger Daten (3):

Steile spektrale Energieverteilung – Ein Spezialfall

Steile SEDs

- Steile Korngrößenverteilung (Ansatz 1) oder kleine obere Korngröße (Ansatz 2)
- Standardlösung ($\gamma=3.5$, großes a_{\max}) schlechter fit (Ansatz 3)
- $r \sim 30 AE$
- $a \sim 10 \, \mu \mathrm{m}$

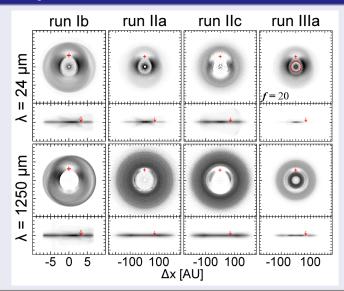
Simulation von Strukturen und deren Beobachtbarkeit

[B] Simulation von Strukturen und deren Beobachtbarkeit (2):

Planet-Scheibe-Wechselwirkung – Strukturen & Beobachtbarkeit

Anfangsbedingungen der Vielteilchensimulationen

Allgemein

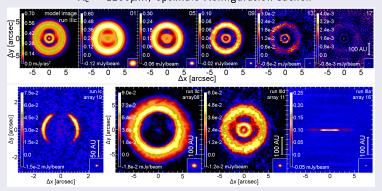

- Stern: Sonne
- 1 Planet

- 1 Staubring / Staubscheibe
- Planet & Scheibe koplanar

Parameter

Run	r _{in} [AE]	rout [AE]	α	M _{pl} [M _J]	a _{pl} [AE]	e _{pl}	t _{max} [Myr]
la	5.0	5.5	0.0	1.0	5.0	0.0	50
Ιb	5.0	5.5	0.0	1.0	3.15	0.0	50
lc	50.0	55.0	0.0	1.0	50.0	0.0	50
۱d	50.0	55.0	0.0	1.0	31.5	0.0	50
lla	70.0	250.0	0.5	0.5	70.0	0.0	100
ПЬ	70.0	250.0	0.5	1.0	70.0	0.0	100
llc	70.0	250.0	0.5	5.0	70.0	0.0	100
Hd	70.0	250.0	0.5	1.0	70.0	0.1	100
Illa	35.0	210.0	0.5	0.5	70.0	0.0	100
IIIb	35.0	210.0	0.5	1.0	70.0	0.0	100
IIIc	35.0	210.0	0.5	5.0	70.0	0.0	100
IIId	35.0	210.0	0.5	1.0	70.0	0.1	100

Simulierte Strukturen

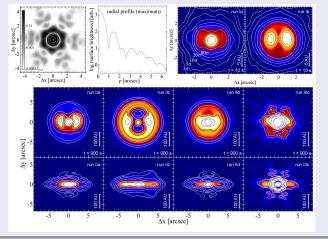


Beobachtung: ALMA

- Fluss, Entfernung skalieren auf bekannte Debris-Scheiben (HD 107146, HD 105, ϵ Eri)
- Simulationen: Gute, aber realistische Bedingungen, $\lambda_{\rm c}=1250\mu{\rm m}$, optimale Konfiguration suchen

Beobachtung: ALMA

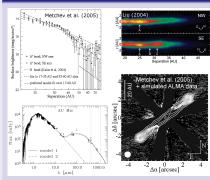
- Fluss, Entfernung skalieren auf bekannte Debris-Scheiben (HD 107146, HD 105, ϵ Eri)
- Simulationen: Gute, aber realistische Bedingungen, $\lambda_{\rm c}=1250\mu{\rm m}$, optimale Konfiguration suchen


Beobachtung: JWST

- lacktriangle Fluss, Entfernung skalieren auf bekannte Debris-Scheiben (HD 107146, ϵ Eri)
- lacktriangle Bild (ohne Stern) falten mit PSF ($\lambda=25~\mu\mathrm{m})\Longrightarrow$ Sensitivität, Auflösung
- PSF skalieren auf Stern, Vergleich mit vorigem Bild

 PSF Subtraktion

Beobachtung: JWST


- lacktriangle Fluss, Entfernung skalieren auf bekannte Debris-Scheiben (HD 107146, ϵ Eri)
- lacktriangle Bild (ohne Stern) falten mit PSF ($\lambda=25~\mu\mathrm{m})\Longrightarrow$ Sensitivität, Auflösung
- PSF skalieren auf Stern, Vergleich mit vorigem Bild ⇒ PSF Subtraktion

Anwendung auf neue Beobachtungen

VLT/VISIR: ϵ Eri F, [Jy] 120A Backman et al. (2009, modifiziert) € Eri flux [mJy/pixel] prof. science target prof. reference difference profile 3σ detection threshold ρ [pixel] VISIR Profil im Q band ($\lambda_c = 18.72 \,\mu\mathrm{m}$)

ALMA Early Science: AU Mic

2 arrays, 4 Bänder angeboten

 $\Rightarrow \text{ (Sub)} \text{ millimeter Beobachtungen in 2} \\ \text{Bändern } (\lambda_{\text{c}} = 450~\mu\text{m},~1250~\mu\text{m}) \\ \text{mit (fast) gleicher räumlicher} \\ \text{Auflösung \& SNR} \\$

Zusammenfassung/Ausblick

- 3 räumlich aufgelöste Scheiben modelliert immer neue, unerwartete Ergebnisse
- Vor allem räumliche Staubverteilung komplex \Longrightarrow Planetensysteme?
- SED Modellierung: Sehr ungewöhnliche Scheiben, neue Klasse?
- Simulation von Planet-Scheibe-Wechselwirkung führt zu deutlichen Strukturen
- Beobachtbar mit ALMA & JWST, Kombination führt zu besten Einschränkungen an Systeme
- Neue, erfolgreiche Beobachtungen durchgeführt/vorbereitet

Danke!

Zusatzfolie: Physik von Debris-Scheiben (1)

Thermodynamisches Gleichgewicht

$$\begin{split} & W_{\lambda}^{\mathsf{abs}} = \mathit{L}_{\lambda,\star} \, Q_{\lambda}^{\mathsf{abs}}(\mathsf{a}) \; \pi \mathsf{a}^2 / 4 \pi r^2 \; ; \quad W_{\lambda}^{\mathsf{emi}} = 4 \pi \mathsf{a}^2 \, Q_{\lambda}^{\mathsf{abs}}(\mathsf{a}) B_{\lambda}(T_{\mathsf{g}}) \\ & r(\mathit{T}) : \int_{0}^{\infty} W_{\lambda}^{\mathsf{abs}} \; d\lambda = \int_{0}^{\infty} W_{\lambda}^{\mathsf{emi}} \; d\lambda \end{split}$$

Einfachstreuung (optisch dünn), Sternstrahlung unpolarisiert

$$W^{
m sca}_{\lambda, heta} \ d heta = L_{\lambda,\star} Q^{
m sca}_{\lambda}(a) S_{11}(heta) \pi a^2/4\pi r^2 \ d heta$$

Zusatzfolie: Physik von Debris-Scheiben (2)

Dynamik dominiert von Gravitation, Strahlung des Sterns

Strahlungsdruck, Poynting-Robertson-Effekt:

$$\beta = \frac{|F_{\rm R}|}{|F_{\rm G}|}$$
 ($\propto 1/a$ für große Körner)

$$\beta \geq$$
 0.5: "Blow-out"

$$t_{\rm PR} \, [{
m yr}] pprox {400 \over eta} \left({M_\star \over {
m M}_\odot}\right)^{-1} \left({r_0 \over {
m AE}}\right)^2 \qquad {
m (Gustafson 1994)}$$

Stauberzeugung durch Kollisionen

$$t_{\mathsf{coll}} pprox rac{1}{ au\omega}$$
 (Backman & Paresce 1993)

Gleichgewichtskaskade

Potenzgesetz $dn(a) \propto n(a)^{-3.5} da$ (Dohnanyi 1969)

Zusatzfolie: Verwendete Programme

Werkzeuge dieser Arbeit: Analytische, dynamische Modellierung

debris	SAnD	modust*
Analytische Modelle	Analytische Modelle	Vielteilchen- simulationen
Bilder in Streulicht & Reemission	Bilder & SED in Reemission	Planet-Scheibe- Wechselwirkung
Hohe Genauigkeit	Sehr effizientes Fitten	MODIM: Bilder & SED

^{*} Rodmann (2006), verfügbar durch Kollaboration mit Jens Rodmann

Zusatzfolie: HD 107146 Ergebnisse (äußere Scheibe)

$$n(r) \propto \left(\frac{r-s}{r_{p}-s}\right)^{\alpha} \cdot \exp\left[\alpha \left(1 - \frac{r-s}{r_{p}-s}\right)\right]$$

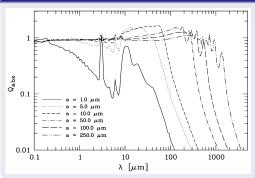
Parameter	Fit	Unsicherheit (1σ)
α_1	7.0	6.2 7.6
$r_{\rm p}$ [AU]	120.3	119.8 120.7
s [AU]	25	21.0 33.0
$a_{\min} \; [\mu \mathrm{m}]$	2.5	2.0 3.0
$a_{ m max} \; [\mu { m m}]$	1000.0	(fixed)
γ	3.6	3.5 3.7
$M_{ m F606W}~[{ m M}_{\odot}]$	6.2×10^{-7}	=
$M_{ m F814W} \ [{ m M}_{\odot}]$	6.5×10^{-7}	=
$M_{\rm F110W}~[{ m M}_{\odot}]$	8.5×10^{-7}	=
$M_{\mathrm{CARMA}} [\mathrm{M}_{\odot}]$	6.7×10^{-7}	=
$M_{ m SED} \ [{ m M}_{\odot}]$	4.4×10^{-7}	_

Zusatzfolie: HD 107146 Ergebnisse (innere Scheibe)

Parameter	Fit	Unsicherheit (1σ)
$R_{ m in}^{ m add}$ [AU]	0.2	0.2 0.6
$R_{ m out}^{ m add}$ [AU]	42.2	6.0 250
$lpha^{ m add}$	8.0	-2.1 1.1
$a_{ ext{min}}^{ ext{add}}$ [μ m]	3.3	0.8 4.4
$\gamma^{ m add}$	10.0	3.6 10.0
$M^{ m add}$ [${ m M}_{\odot}$]	3.6×10^{-11}	_

Zusatzfolie: q¹ Eri, HD 207129 Ergebnisse

	q	HD 207129	
Parameter	Modell 1	Modell 2	
<i>r</i> _{in} [AU]	3.9+4.1	53.2 ^{+27.9} -1.0	$57.3^{+39.4}_{-17.0}$
$r_{ m out}$ [AU]	$183.5^{+16.5}_{-22.4}$	600 ⁽²⁾	$193.6_{-30.7}^{+71.2}$
α	$-1.2^{+0.2}_{-0.5}$	$1.8^{+0.7}_{-0.7}$	$-2.2^{+2.7}_{-2.0}$
$a_{\min} \; [\mu \mathrm{m}]$	$1.8^{+0.8}_{-0.7}$	$1.0^{+0.2}_{-0.8}$	$2.8^{+3.8}_{-1.3}$
$\gamma_{_}$	$3.5^{+0.1}_{-0.2}$	$3.4^{+0.2}_{-0.1}$	$3.8^{+0.4}_{-0.5}$
$M_{\rm dust}$ $[M_{\odot}]$	8.7×10^{-8}	1.2×10^{-7}	2.2×10^{-8}
$V_{ m ice}/(V)$ [%]	50^{+0}_{-50}	50^{+0}_{-50}	50^{+0}_{-50}
i [°]	$82.2^{+2.3}_{-10.7}$	$85.4^{+4.6}_{-1.1}$	$56.6^{+9.8}_{-7.1}$
χ^{2}_{red}	1.24	1.60	0.77


Zusatzfolie: Theorie Steile SEDs

Spektralindex

$$\Delta = \frac{\partial \log F_{\nu}}{\partial \log \nu} \; ; \qquad \Delta_{\nu_1,\nu_2} = \frac{\log F_{\nu_2} - \log F_{\nu_1}}{\log \nu_2 - \log \nu_1}$$

Schwarzkörper: $\Delta \leq 2$

Verhalten des Absorptionsindex (Astronomisches Silikat)

$$W_{\lambda}^{
m emi}(a) \propto Q_{\lambda}^{
m abs}(a) \cdot B_{\lambda}(T_{
m g})$$

- ullet Bruch zwischen 70 μ m und 160 μ m
 - \implies $a \sim 5 \, \mu \text{m}$
 - \dots 50 μ m
- Bruch nicht "verschmiert"
 - \implies schmale Ringe

Zusatzfolie: Eigenschaften, Spektralindex steile SEDs

Object	HIP 103389	HIP 107350	HIP 114948
	22.0	17.9	20.5
Spectral type	F7 V	G0 V	F7 V
$L \ [{ m L}_{\odot}]$	2.03	1.09	1.87
$T_{ m eff}$ [K]	6257	5952	6240
Age [Myr]	250	330	250
			,

Object	HIP 103389	HIP 107350	HIP 114948
$\Delta_{70/100}$	1.94 ± 0.32	2.66 ± 0.45	1.35 ± 0.26
$\Delta_{100/160}$	3.31 ± 0.69	1.95 ± 0.88	2.57 ± 0.44
$\Delta_{70/160}$	2.72 ± 0.39	2.25 ± 0.53	2.04 ± 0.22

Zusatzfolie: Ergebnisse steile SEDs

			HIP I	03389			
	Ans	atz 1	Ansatz 2		A ns	Ansatz 3	
	Silikat	Silkat + Eis	Silikat	Silikat + Eis	Silikat	Silikat + Eis	
R _{in} [AU] R _{out} [AU]	18.2 [7.9 - 24.5] 20.0 [16.3 - 65.1] 0.0 (fixed)	20.9 [8.0 - 26.6] 20.9 [17.3 - 77.3] 0.0 (fixed)	11.9 [4.2 - 16.0] 12.0 [8.8 - 37.4] 0.0 (fixed)	13.6 [4.4 - 19.1] 13.6 [10.2 - 38.5] 0.0 (fixed)	42.3 [12.9 - 63.3] 46.0 [21.3 - 138.5] 0.0 (fixed)	22.5 [8.6 - 43.0] 22.5 [17.9 - 110.9] 0.0 (fixed)	
a_{\min} [μ m] a_{\max} [μ m]	9.5 [7.8 - 10.4] 1000.0 (fixed)	12.8 [10.7 - 13.6] 1000.0 (fixed)	6.1 [2.8 - 9.8] 1000.0 (fixed)	6.6 [2.6 - 12.0] 1000.0 (fixed)	4.2 [3.1 - 7.8] 14.3 [12.7 - 18.1]	9.3 [3.7 - 14.9] 22.7 [14.3 - 28.5]	
$M_{\text{disk}} [M_{\odot}]$	7.4 [6.3 - 10.0] 3.89 e-11 0.816	9.0 [6.5 - 10.0] 3.87e-11 0.776	3.5 (fixed) 1.41e-10 10.277	3.5 (fixed) 1.21e-10 8.488	3.5 (fixed) 1.46e-10 0.628	3.5 (fixed) 4.35e-11 0.760	
X re d	0.010	0.770		07350	0.020	0.700	
		1.0					
	- Ap pro	ach 2	Appr	Approach 3		Approach 4	
	silicate	silicate + ice	silicate	silicate + ice	silicate	silicate + ice	
R _{in} [AU] R _{out} [AU]	29.1 [7.9 - 47.2] 31.3 [13.9 - 113.9] 0.0 (fixed)	30.6 [5.6 - 44.1] 32.3 [16.0 - 138.5] 0.0 (fixed)	9.6 [3.0 - 15.6] 9.6 [5.8 - 33.0] 0.0 (fixed.)	10.9 [3.0 - 16.5] 11.0 [9.1 - 35.7] 0.0 (fixed)	37.1 [4.3 - 54.4] 37.4 [19.2 - 187.5] 0.0 (fixed)	35.2 [7.2 - 54.2] 35.2 [17.4 - 145.3] 0.0 (fixed)	
a_{\min} [μ m] a_{\max} [μ m]	6.9 [2.7 - 10.9] 1000.0 (fixed)	8.2 [3.6 - 10.7] 1000.0 (fixed)	5.7 [4.8 - 11.0] 1000.0 (fixed)	5.8 [4.9 - 11.7] 1000.0 (fixed)	7.8 [1.6 - 10.4] 7.8 [6.3 - 13.3]	9.6 [2.2 - 13.5] 9.6 [6.4 - 17.4]	
$M_{\text{disk}} [M_{\odot}]$	10.0 [6.0 - 10.0] 3.33 e-11 1.652	10.0 [5.9 - 10.0] 2.79e-11 1.568	3.5 (fixed) 3.16e-11 4.229	3.5 (fixed) 2.73e-11 3.869	3.5 (fixed) 4.64e-11 1.528	3.5 (fixed) 3.25e-11 1.488	
χ _{re d}				14948			
	Approach 2		Approach 3		Approach 4		
	silicate	silicate + ice	silicate	silicate + ice	silicate	silicate + ice	
R _{in} [AU] R _{out} [AU]	12.8 [7.1 - 13.7] 12.8 [12.1 - 23.2] 0.0 (fixed)	13.5 [7.8 - 14.9] 13.8 [12.9 - 24.9] 0.0 (fixed)	12.7 [5.5 - 16.6] 12.7 [10.5 - 25.6] 0.0 (fixed)	14.0 [7.9 - 19.1] 14.1 [11.0 - 30.8] 0.0 (fixed)	32.5 [9.0 - 40.1] 34.5 [26.9 - 81.4] 0.0 (fixed)	13.3 [8.4 - 14.5] 13.8 [12.9 - 22.9] 0.0 (fixed)	
a_{\min} [μ m] a_{\max} [μ m]	9.6 [8.9 - 10.2] 1000.0 (fixed) 4.7 [4.4 - 5.2]	12.9 [11.9 - 13.8] 1000.0 (fixed) 4.7 [4.4 - 5.1]	6.4 [3.6 - 9.9] 1000.0 (fixed) 3.5 (fixed)	7.4 [3.0 - 11.7] 1000.0 (fixed) 3.5 (fixed)	3.2 [2.6 - 4.6] 24.2 [10.0 - 27.3] 3.5 (fixed)	11.8 [10.7 - 13.1] 43.8 [10.0 - 53.2] 3.5 (fixed)	
$M_{\substack{\text{disk} \\ \chi^2_{\text{red}}}}[M_{\odot}]$	6.57 e-11 0.284	6.48e-11 0.232	2.65e-10 3.291	2.21e-10 2.333	1.78e-10 0.132	4.85e-11 0.232	

Zusatzfolie: ALMA – Sensitivität: Strategie

Vorbereitende Sensitivitätsstudie für ALMA

- Verschiedene einfache Modelle von Debris-Scheiben um "Sonne"
- Beobachtung simuliert mit ALMA (verschiedene Bänder, Konfigurationen)
- Optimale (realistische) Beobachtungsbedingungen, CASA ALMA simulator
- ⇒ Schlussfolgerungen:
 - ullet Optimales Band: Band 6 ($\lambda_{
 m c}=1250\,\mu{
 m m}$)
 - ullet Kurze baselines, räumliche Auflösung \sim Strukturen
 - Ausgedehnte Scheiben (r > wenige 10 AU, d < 100 pc) gut auflösbar

Zusatzfolie: ALMA – Sensitivität (Simulationen)

Einfaches Modell

Räumliche Verteilung:

$$\sigma(r) \propto r^{0.0}$$
, $r_{
m out} = 1.1 r_{
m in}$

 $r_{in} = 5 AE$, 50 AE, 100 AE

Öffnungswinkel: 10°

Korngrößenverteilung:

$$dn(a) \propto a^{-3.5} da$$

 $a_{\mathrm{min}} = 0.45 \, \mu\mathrm{m}, \; a_{\mathrm{max}} = 2 \; \mathrm{mm}$

Stern:

Sonne (Schwarzkörper, $1.0 L_{\odot}$, 5778 K)

Entfernung:

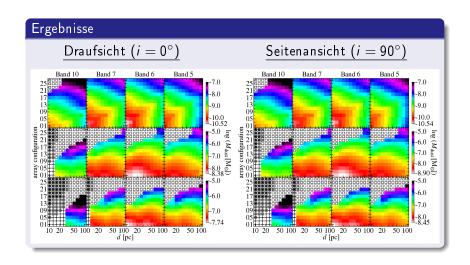
Logarithmisch verteilt: 10 pc ... 100 pc

Inklination: 0°, 90°

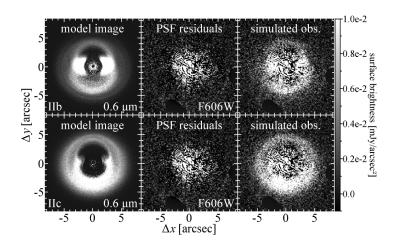
(Simulierte) Beobachtungen

ALMA:

Verschiedene Konfigurationen, $B_{\rm min}=15~{\rm m}$... $79~{\rm m}$, $B_{\rm max}=161~{\rm m}$... $14.5~{\rm km}$


$$\lambda_{\rm c}=350\,\mu{\rm m}$$
, 950 $\mu{\rm m}$, 1250 $\mu{\rm m}$, 1600 $\mu{\rm m}$ (Bänder 10, 7, 6, 5)

$$\implies \delta_{min} = 0.005'' \dots 2.05'', \ \delta_{max} = 0.9'' \dots 22.0''$$


Sehr gute (aber realistische) Bedingungen, 8h Beobachtungszeit

Zusatzfolie: ALMA – Sensitivität (Ergebnisse)

Zusatzfolie: Strukturen mit Hubble

