Peculiar debris disks from Herschel/DUNES

Steve Ertel (ITAP, CAU Kiel)

in collaboration with the HERSCHEL/DUNES team

using HERSCHEL/DUNES data

Steve Ertel Peculiar debris disks from Herschel/DUNES

Astrophysik

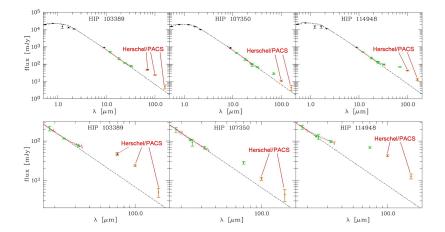
Discussion

The stars The SEDs

The stars

Stellar properties

Object	HIP 103389	HIP 107350	HIP 114948
<i>d</i> [pc]	22.0	17.9	20.5
Spectral type	F7 V	G0 V	F7 V
$L [L_{\odot}]$	2.03	1.09	1.87
$T_{ m eff}$ [K]	6257	5952	6240
Age [Myr]	250	330	250


Steve Ertel Peculiar debris disks from Herschel/DUNES

æ

Discussion

The stars The SEDs

SEDs

Steve Ertel Peculiar debris disks from Herschel/DUNES

æ

The dust as a single temperature black body More exact treatment Conclusion

Treating the dust as a single temperature black body

Planck's law:

$$B_{\lambda}(T) = rac{2hc^2}{\lambda^5} \cdot rac{1}{\exp\left[hc/\lambda kT
ight] - 1}$$

Spectral index Δ :

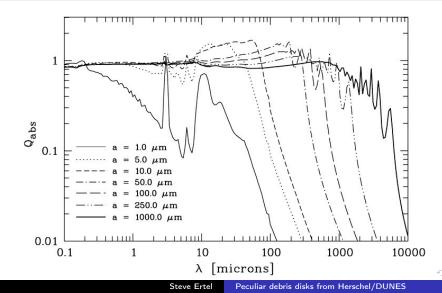
$$\Delta = \frac{\partial \log F_{\lambda}}{\partial \log \lambda} \qquad \qquad \Delta_{\lambda_1, \lambda_2} = \frac{\log F_{\lambda_2} - \log F_{\lambda_1}}{\log \lambda_2 - \log \lambda_1}$$

Rayleigh-Jeans regime: $\Delta=-2$, steeper would mean $\Delta<-2$

The dust as a single temperature black body More exact treatment Conclusion

More exact treatment of the disk

Two (or more) single temperature black bodies


Same result, $\Delta=-2$ where Rayleigh-Jeans approximation valid for coldest dust component

Mie theory

$$B_{\lambda}'(T) = Q_{\mathrm{abs}}(\lambda) \cdot rac{2hc^2}{\lambda^5} \cdot rac{1}{\exp\left[hc/\lambda kT
ight] - 1}$$

The dust as a single temperature black body More exact treatment Conclusion

Absorption efficiency of dust

The dust as a single temperature black body More exact treatment Conclusion

So why are there any "unusually steep" SEDs?

- Dust radially distributed (range of temperatures)
- Different grain sizes (range of temperatures, breaks in $Q_{\rm abs}$ at different wavelengths)
- Larger grains ($a>50\,\mu{
 m m}$) behave similar to black body ($Q_{
 m abs}pprox 1$) up to $\lambdapprox 300\,\mu{
 m m}$
- \implies Breaks in SED smoothened, shifted towards long wavelengths
 - SEDs that fall of steeper than Planck's law at wavelengths $\approx 100\,\mu m$ have never been observed before

・ロト ・ 同ト ・ ヨト ・ ヨト

The dust as a single temperature black body More exact treatment Conclusion

So what is an "unusually steep" SED?

$$\Delta_{\lambda_1,\lambda_2} < -2$$

- At any wavelength combination (70 μm , 100 μm , 160 μm)
- Including error bars

Our disks

Object	HIP 103389	HIP 107350	HIP 114948
$\Delta_{70/100}$	1.94 ± 0.32	2.66 ± 0.45	1.35 ± 0.26
$\Delta_{100/160}$	3.31 ± 0.69	1.95 ± 0.88	2.57 ± 0.44
$\Delta_{70/160}$	2.72 ± 0.39	2.25 ± 0.53	2.04 ± 0.22

Model description A number of approaches Results

A simple debris disk model

The challenge

- Only few relevant SED measurements (up to 8)
- No resolved data (only upper limits, since not resolved with PACS)
- Somehow "strange" results expected

Spatial dust distribution

• Power law
$$\mathit{n}(R) \propto R^{-c}$$

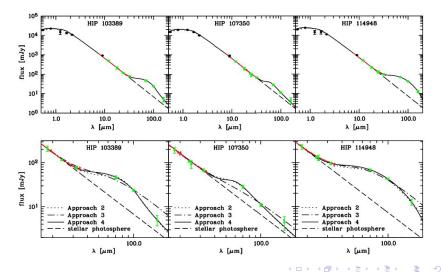
•
$$R_{\rm in}$$
, $R_{\rm in}$

Grain size distribution

• Power law
$$\mathit{n}(a) \propto a^{-\gamma}$$

Model description A number of approaches Results

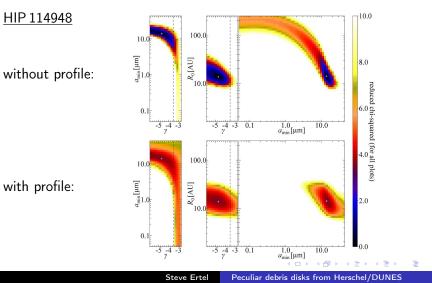
Three different approaches


Approach 2	Approach 3	Approach 4
Steep size distribution	Force standard values	Free upper grain size
• $a_{\rm max} = 1{ m mm}$	• $a_{\rm max} = 1 {\rm mm}$	• a_{\max} free
 α = 0.0 	 γ = 3.5 	• $\gamma = 3.5$
 Others free 	 α = 0.0 	 α = 0.0
⇒ Steep grain size distribution	\implies Unsatisfactory fit, large χ^2	\implies Small upper grain size
\implies Large lower grain size (several $\mu { m m}$)	\implies Still too large lower grain size	\implies Large lower grain size (several $\mu { m m}$)
⇒ Narrow rings at few tens of AU	⇒ Narrow rings at few tens of AU	→ Narrow rings at few tens of AU

イロト イポト イヨト イヨト

э

Model description A number of approaches Results


SED best-fits with SAnD (Kiel)

Steve Ertel Peculiar debris disks from Herschel/DUNES

A number of approaches Results

Including spatial constraints with GRaTeR (Grenoble)

with profile:

HIP 114948

Model description A number of approaches Results

Results

- Strong under abundance of large (> few tens of micron) grains
- Ringlike shape of the disks preferred over broad disks, but not very significant
- Distance from the star of few tens of AU

Scenario 1: Deviation from a standard equilibrium collisional cascade?

- Grain size distribution following $\gamma=-3.5$ only valid for ''standard equilibrium collisional cascade''
- $\bullet\,$ No drag forces, grain sizes from 0 to $\infty\,$
- Good approximation for massive disks where collision time scales very short
- Here very low disk mass, maybe even close to transport dominated

4 冊 ト 4 三 ト 4 三 ト

Scenario 1: Deviation from a standard equilibrium collisional cascade?

- Grain size distribution following $\gamma=-3.5$ only valid for "standard equilibrium collisional cascade"
- $\bullet\,$ No drag forces, grain sizes from 0 to $\infty\,$
- Good approximation for massive disks where collision time scales very short
- Here very low disk mass, maybe even close to transport dominated
- Wavy size distributions, steep in the relevant range possible
- Large lower grain size than blow-out size possible

・ロト ・ 同ト ・ ヨト ・ ヨト

Scenarios Future observational perspectives

Scenario 2: Different grain composition?

- $\bullet\,$ Large porous grains, composed of compact units of $\approx 10\,\mu{\rm m}\,$
- Collisions of few large grains produce large abundance of these compact grains
- Porous grains are colder (Voshchinnikov et al. 2006), hence fainter (Stefan-Boltzmann law)
- Further colliding compact grains produce "normal" distribution of smaller grains
- Only one "extreme" scenario to illustrate what we do not know about dust composition

Scenarios Future observational perspectives

Scenario 2: Different grain composition?

- $\bullet\,$ Large porous grains, composed of compact units of $\approx 10\,\mu{\rm m}\,$
- Collisions of few large grains produce large abundance of these compact grains
- Porous grains are colder (Voshchinnikov et al. 2006), hence fainter (Stefan-Boltzmann law)
- Further colliding compact grains produce "normal" distribution of smaller grains
- Only one "extreme" scenario to illustrate what we do not know about dust composition
- Able to explain both under abundance of small and large grains
- Large grains there, only not visible
- Several "mile stones" in grain growth known that might cause particular shape of the dust

Scenarios Future observational perspectives

Scenario 3: A shepherding planet

- Dust produced in a faint, cold, transport dominated disk further from the star
- Intermediate-sized and small grains dragged inwards by Poynting-Robertson drag, large grains not affected by P-R drag
- Intermediate-sized grains captured in resonance with a planet at few tens of AU (the seen dust ring)
- P-R drag too strong for small grains, not captured, move further inwards onto the star

Scenarios Future observational perspectives

Scenario 3: A shepherding planet

- Dust produced in a faint, cold, transport dominated disk further from the star
- Intermediate-sized and small grains dragged inwards by Poynting-Robertson drag, large grains not affected by P-R drag
- Intermediate-sized grains captured in resonance with a planet at few tens of AU (the seen dust ring)
- P-R drag too strong for small grains, not captured, move further inwards onto the star
- Able to explain both under abundance of small and large grains
- Large grains there, only not visible
- No further stuff needed like porous grains & a mechanism to produce very special grains

Scenarios Future observational perspectives

Future observational perspectives

Source	$\textit{L}_{\rm dust} / \textit{L}_{\rm star}$	$(F_{\rm dust}/F_{\rm s})$	$\left(\textit{F}_{\mathrm{dust}}/\textit{F}_{\mathrm{star}} ight)_{0.6\ \mu\mathrm{m}}$		$_{ m tar})_{2.2\mu m}$
		face-on	edge-on	face-on	edge-on
HIP 103389	$1.5 imes10^{-5}$	$1.1 imes 10^{-6}$	$1.9 imes 10^{-4}$	$1.8 imes 10^{-6}$	$1.5\times 10^{-\textbf{4}}$
HIP 107350	$0.6 imes10^{-5}$	$4.9 imes10^{-7}$	$7.4 imes10^{-6}$	$6.9 imes10^{-7}$	$3.9 imes10^{-5}$
$\operatorname{HIP}114948$	$2.5 imes10^{-5}$	$2.1 imes10^{-6}$	$3.4 imes10^{-4}$	$3.7 imes10^{-6}$	$2.6 imes10^{-4}$

- Too faint for optical/near-infrared direct imaging, extension too small for coronagraphy
- SED decreasing quickly towards long wavelengths, too faint for ALMA continuum observations
- Optical/near-infrared interferometry: VLTI/PIONIER FOV too small for face-on orientation, edge-on possible, but sensitivity probably too low
- Further photometry and spectroscopy: $35 \,\mu m 200 \,\mu m$ interesting (Herschel/PACS spectroscopy, SOFIA photometry)
- Optical/near-infrared search for planetary companions possible, very interesting if Scenario 3 is correct

Scenarios Future observational perspectives

SAnD SED fitting results

			HIP 1	03389			
	Approach 2		Approach 3		Approach 4		
	silicate	silicate + ice	silicate	silicate + ice	silicate	silicate + ice	
R _{in} [AU]	18.2 [7.9 - 24.5]	20.9 [8.0 - 26.6]	11.9 [4.2 - 16.0]	13.6 [4.4 - 19.1]	42.3 [12.9 - 63.3]	22.5 [8.6 - 43.0]	
Rout [AU]	20.0 [16.3 - 65.1]	20.9 [17.3 - 77.3]	12.0 8.8 - 37.4	13.6 [10.2 - 38.5]	46.0 [21.3 - 138.5]	22.5 [17.9 - 110.9	
α	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	
a_{\min} [µm]	9.5 [7.8 - 10.4]	12.8 [10.7 - 13.6]	6.1 [2.8 - 9.8]	6.6 [2.6 - 12.0]	4.2 [3.1 - 7.8]	9.3 [3.7 - 14.9]	
a_{max} [µm]	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	14.3 [12.7 - 18.1]	22.7 14.3 - 28.5	
γ	7.4 [6.3 - 10.0]	9.0 [6.5 - 10.0]	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	
$M_{\rm disk} [M_{\odot}]$	3.89e-11	3.87e-11	1.41e-10	1.21e-10	1.46e-10	4.35e-11	
reduced χ^2	0.816	0.776	10.277	8.488	0.628	0.760	
			HIP 1	07350			
	Approach 2		Appro	oach 3	Approach 4		
	silicate	silicate + ice	silicate	silicate + ice	silicate	silicate + ice	
R _{in} [AU]	29.1 [7.9 - 47.2]	30.6 [5.6 - 44.1]	9.6 [3.0 - 15.6]	10.9 [3.0 - 16.5]	37.1 [4.3 - 54.4]	35.2 [7.2 - 54.2]	
Rout [AU]	31.3 [13.9 - 113.9]	32.3 [16.0 - 138.5]	9.6 [5.8 - 33.0]	11.0 [9.1 - 35.7]	37.4 [19.2 - 187.5]	35.2 [17.4 - 145.3	
α	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	
a_{\min} [µm]	6.9 [2.7 - 10.9]	8.2 [3.6 - 10.7]	5.7 [4.8 - 11.0]	5.8 [4.9 - 11.7]	7.8 [1.6 - 10.4]	9.6 [2.2 - 13.5]	
a _{max} [μm]	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	7.8 [6.3 - 13.3]	9.6 [6.4 - 17.4]	
γ	10.0 [6.0 - 10.0]	10.0 [5.9 - 10.0]	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	
M _{disk} [M _☉]	3.33e-11	2.79e-11	3.16e-11	2.73e-11	4.64e-11	3.25e-11	
reduced χ^2	1.652	1.568	4.229	3.869	1.528	1.488	
			HIP 1	14948			
	Approach 2		Appro	Approach 3		Approach 4	
	silicate	silicate + ice	silicate	silicate + ice	silicate	silicate + ice	
R _{in} [AU]	12.8 [7.1 - 13.7]	13.5 [7.8 - 14.9]	12.7 [5.5 - 16.6]	14.0 [7.9 - 19.1]	32.5 [9.0 - 40.1]	13.3 [8.4 - 14.5]	
Rout [AU]	12.8 [12.1 - 23.2]	13.8 [12.9 - 24.9]	12.7 [10.5 - 25.6]	14.1 [11.0 - 30.8]	34.5 [26.9 - 81.4]	13.8 [12.9 - 22.9]	
α	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	
a _{min} [μm]	9.6 [8.9 - 10.2]	12.9 [11.9 - 13.8]	6.4 [3.6 - 9.9]	7.4 [3.0 - 11.7]	3.2 [2.6 - 4.6]	11.8 [10.7 - 13.1	
a _{max} [μm]	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	1000.0 (fixed)	24.2 [10.0 - 27.3]	43.8 [10.0 - 53.2	
γ	4.7 [4.4 - 5.2]	4.7 [4.4 - 5.1]	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	3.5 (fixed)	
$M_{\rm disk} [M_{\odot}]$	6.57e-11	6.48e-11	2.65e-10	2.21e-10	1.78e-10	4.85e-11	
reduced χ^2	0.284	0.232	3.291	2.333	0.132	0.232	

Steve Ertel

Peculiar debris disks from Herschel/DUNES

Scenarios Future observational perspectives

Thank you very much!

Steve Ertel Peculiar debris disks from Herschel/DUNES